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Abstract 

We report a comprehensive study on the molecular conformation and dynamics of very 

large polyethylene-oxide (PEO) rings in the melt: (i) For all rings, independent of ring size, 

by SANS we observe a cross over, from a strong 𝑄-dependence at intermediate	𝑄 to a 𝑄#$ 

dependence at higher 𝑄. Constructing a generic model including a cross over from Gaussian 

statistics at short distances to more compact structures at larger distances, we find the cross 

over at a distance along the ring of 𝑁&,( = 45 ± 2.5 monomers close to the entanglement 

distance in the linear counterpart. This finding is clear evidence for the predicted elementary 

loops building the ring conformation. (ii) The radius of gyration 𝑅0(𝑁) follows quantitatively 

the result of numerous simulations. However, other than claimed, the cross over to mass 

fractal statistics does occur around 𝑁 ≅ 10𝑁&,( , but up to 𝑁 ≅ 44𝑁&,(	the relation  

𝑅0(𝑁)	~	𝑁(.78 holds. The self-similar ring dynamics was accessed by PFG-NMR and NSE: 

We find three dynamic regimes for center of mass diffusion starting (i) with a strongly 

sub-diffusive domain 〈𝑟;<=$ (𝑡)〉	~	𝑡@(0.4 ≤ 𝛼 ≤ 0.65) (ii) a second sub-diffusive region 

〈𝑟;<=$ (𝑡)〉	~	𝑡(.DE that (iii) finally crosses over to Fickian diffusion. The internal dynamics 

at scales below the elementary loop size is well described by ring Rouse motion. At larger 

scales the dynamics is self-similar and follows very well the predictions of scaling models 

with preference for the fractal loopy globule (FLG) model. Finally, we note that the key 

results were previously published in the form of two letters [1,2]. 
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Introduction 

In melts of linear chains, the mutual interaction is screened and the chains perform an 

undisturbed Gaussian random walk. Even though in melts of ring polymers the excluded 

volume interaction is screened as well, topological constraints that arise from the ring topology 

remain. Entropically for ring polymers interpenetration is costly and compact structures that 

evolve for high molecular weight are induced - the ring conformations are assumed to become 

mass fractals confining rings into territories  [3–6].  

Polymer melt dynamics is characterized by the fascinating topological interchain 

interactions that dominate their dynamic behavior. For linear chains topological interactions 

lead to tube formation that constrains lateral chain motion - in the celebrated reptation process 

a chain via its ends creeps out of the tube-like constraints imposed by the surrounding 

chains [7]. Polymer rings don’t feature ends. Therefore, they cannot undergo reptation and 

compared to linear and branched polymers exhibit distinctly different dynamic properties. The 

ring topology impacts not only the ring conformation but also pertains to the different role of 

interactions with the surrounding chains. The related phenomena are not only of fundamental 

interest, but also are highly relevant e.g. for a mechanistic understanding of cyclic DNA in 

chromatin folding in nucleosomes providing thereby easy access to genetic information [8]. 

Since a long time, the clarification of the detailed nature of the topological constraints 

and their consequences for the conformation and dynamics of polymer rings has been a 

challenge both for theoretical and experimental physics including large scale simulation. The 

inherent problems involved in the synthesis of well-defined rings prevented progress in the field 

until very recently. Aside of numerous investigations on rings with small 𝑁 𝑁&⁄ , where 𝑁 is the  

number of monomers and 𝑁& the entanglement distance in the corresponding linear polymer, 

the largest rings in terms of 𝑁 𝑁&⁄ 	that were investigated so far were polystyrene (PS) rings 

with 𝑁 𝑁&⁄ ≅ 15	  [9] and poly(ethylene oxide) (PEO) rings reaching 𝑁 𝑁&⁄ ≅ 10  [10]. While 

for PS only structural investigations were performed, for PEO-rings both the conformation as 

well as the molecular dynamics were studied. For the radius of gyration 𝑅0 the PS results 

indicate 𝑅0$~𝑁(.8G over the entire range of molecular weights, the PEO data display a weaker 

power law 𝑅0$~𝑁(.HI, both being far away from the predicted asymptotic mass fractal behavior 

𝑅0$~𝑁$ 7⁄ .  

We studied the conformation and dynamics of very large PEO ring polymers in the melt 

as a function of their chain length 𝑁. In terms of entanglement distances 𝑁& in the corresponding 
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linear melt we covered sizes from 𝑁 ≈ 5𝑁& up to 𝑁 ≈ 44𝑁&. This very large range is well 

beyond what experiments so far achieved and facilitated the direct and clear experimental 

observation of small-scale, ring size independent substructures with Gaussian conformation. 

These substructures we take as the signature of elementary loops being at the basis of the self-

similar ring conformation  [1]. We also investigated the internal motions and the connected 

short time diffusion properties of these very large polymer rings [2]. Three dynamic regimes 

for the center of mass (c.o.m.) diffusion were identified. The internal dynamics was found to 

follow the concept of self-similar motion as proposed in scaling models, in particular 

Rubinstein’s fractal loopy globule (FLG) model [11]. In this manuscript we present data that 

were partly published previously in the form of two letters [1,2], and put structural and dynamic 

work into their context. The paper is organized as follows: First we discuss theoretical 

predictions both for the ring conformation as well for their dynamics. Then we present small 

angle neutron scattering (SANS) results on the ring conformations followed by the results of 

dynamic studies that were achieved by neutron spin echo spectroscopy (NSE) and pulsed field 

gradient (PFG) NMR. Finally, wrapping up the results we conclude about the  state of the art. 

 

Theoretical Considerations 

a) Ring Conformation 

De Gennes first introduced the notion of self-similar fractal crumpled globule 

conformations of polymers, in order to describe the conformation of collapsed single chains in 

solution below theta conditions [12]. Under the condition of fixed topological obstacles 

Rubinstein introduced the double folded lattice animal (DFLA) model for rings [13]. This 

model considers randomly branched double folded loops that maximize entropy and lead to a 

fractal dimension 𝑑L = 4. In a mean field approach Cates and Deutsch calculated the free 

energy cost of topological interactions [14]. Thereby they balanced the topological free energy 

taken as proportional to the overlap parameter 𝑂NO: 𝑘R𝑇𝑂NO ≈ 𝑘R𝑇𝑅7/𝑁𝑣( with the free 

energy penalty due to confinement: 𝑘R𝑇𝑁𝑙$/𝑅$. Minimization leads to 𝑅~𝑁$/E or 𝑑L = 2.5 

(R: ring size;	𝑁: overall chain length; 𝑣(: monomer volume, l: monomer length). Sakaue 

described the topological constraints in terms of an excluded volume concept called topological 

volume [15]. It leads to a squeezing of the ring toward a globular state. The onset of compact 

statistics was estimated to occur around 𝑁∗ ≈ 10𝑁&. The DFLA model was generalized by 

Grosberg allowing for the interpenetration of loops [16]. The ring conformation then underlies 
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a skeleton lattice tree branching randomly at the entanglement spacing 𝑑XYZ& ≅ 𝑙[𝑁& , where 

𝑙 = 𝑙([𝐶]𝑛Z is the monomer length (𝑛Z: number of main chain bonds in a monomer; 𝐶] the 

characteristic ratio; 𝑙( the bond length). The free energy becomes a function of the backbone 

length 𝐿 of the lattice tree with a statistic following a self-avoiding random walk with the fractal 

dimension 𝑑Z = 5 3⁄ . While for the DFLA 𝑑L = 4 and 𝑑Z = 2, for Grosberg’s model 𝑑L = 3 

and 𝑑Z = 5 3⁄ . Considering rings as a collection of Gaussian loops ranging from 𝑁&  to the size 

of the backbone ~𝑁$/7 that are assembled in random trees, Obukhov et al. presented a 

geometrical model called decorated loop model [17] . For the radius of gyration 𝑅0 it predicts:

    

𝑅0$ ≅ 1.6𝑅&,($ a
𝑁
𝑁&,(

b

$
7
c1 − 0.38a

𝑁
𝑁&,(

b
#f7
g																																			 (1)	

where 𝑁&,(	 ≈ 𝑁&	and	𝑅&,($ = 𝑙$𝑁&,( 12⁄  the radius of gyration of the elementary loop. Eq. (1) 

describes a very slow cross over to the asymptotic 𝑑L = 3 fractal behavior. Finally, conjecturing 

that the overlap criterion of Kavassalis and Noolandi [18] for entanglement formation in linear 

melts is also valid for the loop overlap in ring systems Rubinstein et al. developed the FLG 

model [11]. For linear polymers 𝑂hi ≅
jkil

m
n

op
≈ 20 was verified for numerous polymer melts in 

terms of the packing model. Translated to rings the 𝑂hi-rule assumes that ring conformations 

consist of a large loop that stays at the overlap parameter 𝑂hi	with similar size loops of 

neighboring rings and a set of smaller loops. The constant overlap 𝑂hi of loops is conjectured 

to occur in a self-similar way over a wide range of length scales from the entanglement length 

𝑑XYZ&	up to ring size 	(𝑂hi𝑁𝑣()f/7. Recent simulations by Rosa and Everaers support 

Rubinstein’s conjecture [19] . 

Ring conformations also have been subject of numerous simulation approaches. 

Halverson et al. recently rescaled a large number of simulation results in terms of 𝑁 𝑁&⁄  

resulting in a master curve combining all results for the ring size 𝑅0. They found a common 

cross over to mass fractal behavior around 𝑁 𝑁&⁄ ≅ 15. From a primitive path analysis of the 

simulation results by Halverson et al.  [20,21], Rubinstein et al.  arrived at a cross over for the 

characteristic size of the primitive path segment to 𝑑L = 3 as a function of the reduced contour 

length [11]. 
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b) Ring Dynamics 

 Early work considered the conformation and motion of polymer rings through an array 

of fixed obstacles. The DFLA model  [13] propounded an analogy to randomly branched 

polymer – the lattice tree, where relaxation occurs by retraction of double folded strands leading 

to a terminal relaxation time 𝜏r~𝑁7 with N the number of monomers, fractal dimension of 𝑑L =

4 and a center of mass diffusion 𝐷~𝑁#$. Later on, the model was refined correcting the terminal 

time to 𝜏r~𝑁$.E  [22]. 

 As mentioned above Grosberg et al. dismissed the unrealistic limiting fractal 

dimension of the DFLA model and considered a skeleton lattice tree that branches randomly at 

an entanglement spacing 𝑑XYZ& = 𝑙𝑁&,(
f/$  resulting in  the fractal dimension of the backbone or 

trunk of the lattice tree of 𝑑u = 5 3⁄ , the statistics of a self-avoiding random walk  [16]. For 

the dynamics of this self-similar structure, Grosberg et al.  derived 𝜏r ≈ 𝜏&v𝑁 𝑁&,(⁄ w$.EI, 

where 𝜏&	is the entanglement time. Finally, the self-consistent FLG model conjecturing that the 

overlap of loops is limited by an overlap criterion similar to that for linear melts, also leads to 

a limiting fractal dimension of 𝑑L = 3  [11].  

 In order to discuss the dynamics of such rings in a melt, it is important to note that 

in a melt of rings the topological constraints are diluting with progressing time, because 

with time loops of increasing sizes are relaxed and cease to be obstacles in a similar way as 

tube dilation occurs e.g. in polydisperse linear melts  [23,24]. The time scale is set by the time 

a loop of a given size has travelled over its own size defining thereby the effective time 

dependent tube diameter 𝑑(𝑔, 𝑡) 

𝑑(𝑔, 𝑡) = 	 〈𝑟&$(𝑔)〉f/$ = 	 〈𝛥𝑟;<=$ (𝑔, 𝑡)〉f/$																																								(2) 

where 𝑟& is the diameter of a loop containing	𝑔 monomers and 𝛥𝑟;<=$ 	is the mean squared 

displacement of the loop center of mass. The equation holds for complete tube dilation, which 

is supported by MD-simulations  [19]. For 𝑑L = 3 𝑑(𝑔, 𝑡)	becomes 𝑑(𝑔, 𝑡) ≅ 𝑑( z
0(X)
il,p

{
f/7

 and 

𝑑v𝑁&,(, 𝜏&w = 𝑑XYZ& . The FLG model, assuming complete tube dilation, is also termed  self-

consistent FLG model and leads to  

    𝜏r = 	 𝜏& |
i
il,p

}
$~f/r�

																																																													(3) 
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For the c.o.m. diffusion constant the model predicts: 

   𝐷;<= ≅ ��n

��
= 	𝐷�,& z

i
il,p

{
#$~ m

�� 																																							(4) 

with 𝐷�,& =
𝑑XYZ&$

𝜏&� , the Rouse diffusion coefficient of one elementary loop. Without tube 

dilation in the naive FLG model the terminal times are 

      𝜏r ≅ 𝜏& z
i
il,p

{
$~

��
�� 																																																						 (5) 

and  diffusion 

     𝐷;<= ≅ 	𝐷& z
i
il,p

{
#$~

n���
�� 																																											(6) 

 

Self-similar relaxation implies that any section of the ring larger than 𝑁&,(   relaxes in the same 

way as the whole ring;  thus, the FLG model for a mode “𝑝” leads to 

 𝜏u = 𝜏& z
i

uil,p
{
$~f/r�

																																									(7) 

 

and correspondingly for the other models   

 𝜏u ≅ 𝜏& z
i

uil,p
{
$~

��
�� 																																																				(8) 

Given this property, we call the scaling models also spectral models and the exponents spectral 

exponents. On the basis of the experimentally determined fractal ring dimensions of the PEO-

rings 𝑑L = 1 𝜈⁄   [1] with small variations owed to slightly different	𝜈, for the spectral  

exponents the models predict: FLG: 2.45; DFLA: 2.5; Grosberg: 2.75; naive FLG: 2.9. 

Aside from theoretical modelling a significant amount of MD-simulations is available. 

Using coarse grained models, the largest MD-simulation effort so far is due to Halverson et al., 

where rings up to 57	𝑁& equivalents were simulated [25]. In some disagreement to the 

predictions of the scaling models, for ring diffusion they found 𝐷~𝑁#$.7.  Furthermore, the 𝑁-

dependencies of ring and linear counterparts were found equal, with the prefactor  for ring 

diffusion about seven times larger than that for linear chains. In agreement with theoretical 

predictions, for early diffusion the simulation revealed sub-diffusive behavior 〈𝑟;<=$ (𝑡)〉	~	𝑡(.DE	 

up to times and distances of about 2 to 3 times 𝑅0.	The internal rearrangements of longer rings 
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were found to occur much faster than the time it takes to diffuse over their own size. But on the 

other hand, the 𝑡f G⁄  regime in the segment self-correlation function extends to 2-3 times of 𝑅0$; 

there exists no second 𝑡f $⁄  regime as for linear chains  [3]. Atomistic simulations on large 

poly(ethylene oxide) (PEO) rings corresponding to our 10K (𝑀�= 10 kg/mol) and 20K (𝑀�= 

20 kg/mol) samples were analyzed in terms of Rouse modes that were found to provide an 

orthogonal basis also for rings  [26]. The analysis in terms of Rouse modes revealed that the 

power law exponent for the Rouse spectrum 𝜏u~𝑝#$	did not change even for the largest ring, 

while the Rouse amplitudes were diminishing for low 𝑝. Very recently Wong and Choi in terms 

of a united atom model presented MD-simulation for polyethylene (PE) rings in connection 

with PRISM theory, where aside from normal Fickian diffusion a short time regime with 

〈𝑟;<=$ (𝑡)〉	~	𝑡(.G$ was observed  [27]. 

 

Ring Synthesis and Characterization  

The procedure for the synthesis of the PEO rings up to 20 kg/mol (R10 and R20) is 

described in reference [28]. In this process the ring formation of HO-PEO-OH is carried out 

with the help of p-toluenesulfonyl chloride (TosCl) in the presence of KOH. The intermediately 

formed tosylation product HO-PEO-OTos reacts with still unreacted OH-end groups under the 

formation of an ether bond. In a dilute solution and considering that the ring closure reaction is 

much faster than the tosylation reaction, predominantly unimeric rings are formed by reaction 

of a tosylated chain end with the still OH-functionalized second end of a chain. As the samples 

were synthesized in gram quantities, the ring closure reactions were carried out at moderate 

dilution conditions which lead to visible amounts of chain coupling, but the main product was 

the unimeric ring. 

For the synthesis of rings with higher molecular weights than 20 kg/mol (R40 and R100) 

this procedure was not useful and led to very low ring yields. The main reason for these 

limitations is the decreasing concentration of reactive groups with increasing molecular weight, 

which drastically slows down the reactivity in the tosylation step, where OH-PEO-OH reacts 

with the activation agent TosCl. Therefore, a different strategy was chosen for the synthesis of 

the R40 and R100 rings. In the new process the linear PEO precursors were synthesized using 

the potassium salt of di(ethylene glycol) monobenzyl ether (BnO-(EO)2-OK) as initiator for 

the polymerization of ethylene oxide, yielding mono-alcoholic BnO-PEO-OH. This compound 

was immediately tosylated with a large excess of TosCl to BnO-PEO-Tos, followed by the 

cleavage of the initial benzyl group with H2/PdC which leads to HO-PEO-OTos. This 
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compound was used for the ring closure reactions. The amount of unimeric rings in the 

cyclization raw products ranged from 30 to 50%, depending on the molecular weight. Unreacted 

linear precursor and chain coupled higher molecular weight linear byproducts were eliminated 

from the cyclization raw products by oxidizing the alcoholic chain ends to carboxylic acids and 

removing the oxidized material with the help of a basic ion exchange resin. Because of the very 

low concentrations of carboxylic acid head groups in the case of the R40 and R100 polymers, 

a very fine-grained ion exchange resin (SourceTM 15Q) had to be used in order to efficiently 

remove the oxidized linear material. Smaller quantities of higher molecular weight cyclic PEO 

were finally removed by fractionation using chloroform/heptane as solvent/non-solvent pair. 

Deuterated rings were prepared in the same way as the hydrogenous counterparts and contained 

as a consequence of the used initiator two hydrogenous EO-units in the ring. 

The characterization of the newly synthesized rings hR40, dR40, hR100, and dR100 was 

performed using size exclusion chromatography (SEC). For all chromatograms there is no 

higher molecular weight linear or ring shaped polymer visible at lower elution times. The same 

holds for the linear mother compounds having the same molecular weights as the ring polymers. 

For all chromatograms, the left flank of the product signal shows no indication of the linear 

polymer, whose elution time is about 0.5 min. lower than the one of the ring product. In order 

to test the sensitivity of the SEC method for the detection of linear byproduct, a sample of 

dR100 was contaminated with 1% of linear polymer. The SEC traces of dR100 and the 

contaminated sample are shown in Fig. 1. The small shoulder between 18.75 min and 19.25 

min shows the linear contamination, which is not present in the non-contaminated sample (see 

Fig. 1, insert). Therefore, we safely conclude that the fraction of linear chains in the hR40, 

dR40, hR100, and dR100 ring samples is below 1%. The R10 and R20 samples synthesized 

earlier contain higher fractions of linear polymer because the purification process of the raw 

products was less efficient. It should also be pointed out that the quantification of linear chains 

by NMR end group detection  [27] did not work for the R40 and R100 rings because of the 

extremely small end group concentrations. Table 1 summarizes the obtained ring polymers. 
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Fig. 1 SEC chromatograms of the ring dR100 with and without 1% of linear dL100. The insert 

magnifies the region between 18.7 and 19.4 minutes elution time. 

 

Table 1 Molecular weight 𝑀�, number of monomers 𝑁, radii of gyration 𝑅0 and Bensafi fractal 

exponent 𝜈 of synthesized ring polymers, sub-diffusivity exponent	𝛼 for the initial c.o.m. 

diffusion, scaling exponent 𝜇 describing the internal ring dynamics, 〈𝑟f$〉 and 〈𝑟$$〉 - cross over 

MSDs of the c.o.m. diffusion. The 𝑅0 data were corrected for contribution of linear 

contaminants, inverse fractal ring dimension 𝜈 = 1/𝑑L.  

Ring 𝑀� 

[g/mol] 

𝑀�
𝑀�
�  

 

𝑁 𝑅0 

[nm] 

𝜈 𝛼 𝜇∗∗ 〈𝑟$$〉 

[nm$] 

〈𝑟f$〉 

[nm$] 

hR100 83600 1.02 1900       

dL100 94500 1.01 1969       

dR100 94200 1.01 1962 4.90(1) 0.430(3)     

hR100* 87300 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1980 4.92*  0.41(1) 2.4(1) 63.00+ 23.00+ 

dR100* 96000 1.01 2000 4.94*      

hR40 44000 1.01 1000 3.85  0.54(4) 2.4(1) 38.85+ 14.24+ 

dR40 38600 1.01 804 3.54(.1) 0.448(3)     
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hR20 20100 1.03 456   0.53(5) 2.5(6) 19.24+ 7.40 

dR20 21900 1.03 457 2.78(.1) 0.45(1)     

hR10 10100 1.02 230   0.65(4) 5.0(8) 12.00 44.00 

dR10 11200 1.02 234 2.14(.04) 0.460(3)     

*the 𝑅0 were corrected using 𝑅0$~𝑁(.DH, **the scaling model was fitted simultaneously to R40 and R100 ;+ scaled 

cross over MSDs, see text; 

 

Structure Determination 

The R40 and R100 samples were based on hydrogenated ring polymer matrices with an 

addition of small volume fractions 𝜙 of deuterated rings. In the samples R10 and R20 a small 

volume fraction of protonated rings was added to the deuterated ring polymer matrix. While the 

smaller rings R10 (𝜙 =5%) and R20 (𝜙 =10%) were studied at one volume fraction only, for 

the large rings a systematic variation of  (1%≤	𝜙 ≤5%) was performed. The Small Angle 

Neutron Scattering (SANS) experiments were carried out with the SANS instrument D22 at the 

ILL in Grenoble at a temperature of 413K  [29]. The 2-dimensional SANS data were 

orientationally averaged, background subtracted and normalized to absolute scale using direct 

beam measurements. Furthermore, data from adjacent 𝑄 values were merged according to their 

statistical errors. 

Figure 2 displays SANS data obtained from all ring samples at the highest volume 

fraction of deuterated or hydrogenated rings (R10, R20) respectively in a double logarithmic 

plot. For better visibility the different results were shifted by a factor 2 with respect to each 

other. All data well display the Guinier range at low 𝑄, a steep decay at intermediate 𝑄 and a 

cross over towards a weaker 𝑄#$ dependence at high 𝑄.  
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Fig. 2 SANS based form-factors observed for rings of different molecular weights covering the 

range 5 ≤ 𝑁 𝑁&,( ≤ 44⁄ . For better visibility the data are shifted vertically by a factor of 2 with 

respect to each other. The solid lines are the results of joint fits with Eqs. 10 (see text). Copyright 

2020 ACS 

 

Fig. 3 presents SANS results from the R100 ring taken at different volume fractions of 

the deuterated component. The data were normalized to the deuterated volume fraction. As may 

be seen the data perfectly superimpose to each other. Thus, there is no notable Flory-Huggins 

parameter χ	between the hydrogenated and deuterated rings. As χ is negligible for the largest 

rings, there will be no influence at smaller rings. 
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Fig. 3 SANS data for R100 rings normalized to the weight concentration (wt%) and sample 

volume (see the legend). The data for 0% indicate the SANS intensity extrapolated to zero 

concentration. 

 

Fig. 4 displays the same data as shown in Fig. 2 in terms of a Kratky plot (multiplication of Y-

axis by 𝑄$) in a range 𝑄 > 0.5	nm#f. We clearly see a plateau developing at high 𝑄 that changes 

towards a well-defined increase of 𝐼(𝑄)𝑄$ towards lower 𝑄. The dashed line marks the cross 

over in 𝑄 between the two regimes. We note that the position of this cross over is independent 

of the ring size and always occurs at the same position in 𝑄. Furthermore, the data show that 

the clear observation of a well-pronounced crossover effect largely bases on the large ring sizes.   
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Fig. 4 Kratky plot 𝐼(𝑄)𝑄$ vs. 𝑄 of the data displayed in Fig. 2 in the regime of large 𝑄 >

0.5	nm#f taking again the same vertical shifts. The dashed line marks the position of the cross 

over between the fractal and Gaussian regimes. Copyright 2020 ACS 

 

Considering the theoretical ideas of ring conformations built from elementary loops of 

a molecular size close to that of an entanglement strand in linear melts, we are led to identify 

the observed cross over as the structural footprint of these elementary loops that need to be 

independent of the ring size. 

Based on these ideas, in the following we construct a generic expression for the ring 

form-factor that takes in to account this cross over. At large distances along the ring contour 

length we expect compressed conformations. There the real space distances 𝑟 between 

monomers i and j relate to a monomer random walk more compact than Gaussian with a fractal 

dimension 𝑑L =
f
o
 : 

〈𝑟$〉~ |(|𝑖 − 𝑗|) �1 − |�#�|
i
�}

$o
																																																		(9) 
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with the exponent 𝜈 < f
$
 . For mass fractals with a fractal dimension 𝑑L = 3,	𝜈 = f

r�
= f

7
. The 

second term in Eq. 9 arises from the ring closure condition. The common exponentiation of 

both terms bases on an investigation by Bensafi et al.  [30] For |𝑖 − 𝑗| ≤ 	𝑁&,( Gaussian 

statistics prevails and 𝜈 = f
$
  holds. We consider a smooth cross over between both regimes and 

describe it by a sum of Fermi functions of width  𝜈��rX�  centered at 𝑁&,(. Then the ring form 

factor becomes: 

𝑃(𝑄) =
1
𝑁�exp ¡−

𝑄$𝑙$

6
|𝑖 − 𝑗|$ol�� a1 −

|𝑖 − 𝑗|
𝑁 b

$ol��
¢

i

�,�

																										(10a) 

with 

𝜈&LL = 𝜈f + ¤
ν − 𝜈f

1 + exp	 |
𝑁&,( − |𝑖 − 𝑗|

𝜈��rX�
}
¦																																					(10b) 

where 𝜈f =
f
$
 is the local chain expansion exponent and 𝜈 = 1 𝑑L⁄  the large scale expansion 

exponent. 

The solid lines in Fig. 2 are the result of a joint fit of Eqs. 10 to the corrected SANS 

data. Thereby the length of the Gaussian substructures 𝑁&,( was varied jointly, while the other 

parameters: total intensity, fractal exponent ν and monomer length 𝑙 were varied independently. 

In addition, to correct small mistakes in the background subtraction a flat background was 

considered that turned out to be in the 10#7  regime. With this approach a nearly perfect fit for 

all rings was achieved. For the crucial size of the Gaussian substructures taken as elementary 

loop size, we found 𝑁&,(=45±2.5.  

In order to investigate the statistical uncertainty of the elementary loop size, we 

calculated the residual sum of errors 𝜒$ for different fixed values of 𝑁&,(. Fig. 5 displays 𝜒$ as 

a function of 𝑁&,( showing a well-defined minimum at 𝑁&,( = 45.  
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Fig. 5 𝜒$ as a function of fixed values for 𝑁&,(.  

 

Within a few percent the fitted intensities agreed with expectation. For the monomer 

length 𝑙 =0.568±0.012 nm was found in good agreement with 𝑙 = [3𝐶]𝑙($ = 0.58  [31]. The 

results for 𝜈 are displayed in Table 1. Over the large range of 𝑁 the exponent 𝜈 varies only very 

slightly and even for the largest ring with 𝑁 𝑁&,( = 44⁄  the fractal dimension 𝑑L =
f
o
= 2.33 is 

well below that of a mass fractal. Finally, we note that the fit is insensitive to the value of 𝜈��rX� . 

For the fits displayed in Fig. 1 we imposed 𝜈��rX� = 1. 

Inserting the fitted parameters and expanding Eqs. 10 with respect to 𝑄$, directly yields 

the radius of gyration 𝑅0	of the rings. The obtained results are included in Table 1 and displayed 

as a function of monomer number in a double logarithmic presentation in fig. 6. In terms of a 

power law description, the 𝑁 -dependence of 𝑅0(𝑁) is well accounted for by an exponent 𝜈�� =

0.39 ± 0.01	, smaller than the finding of ν = 0.43…0.46 for rings of 𝑀� = 94 kg/mol and 

below, however, far away from mass fractal behavior. The error calculation both with respect 

to statistical as well as to systematic errors relating to linear contaminants  are presented in 

Annex I.  
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Fig. 6 Ring radii of gyration 𝑅0	as a function of ring size 𝑁 𝑁&,(⁄ . Solid black line: power law 

fit 𝑅0~v𝑁 𝑁&,(⁄ wo©�  with 𝜈�� = 0.39 ± 0.01. Solid red line: prediction of Eq. 1 calculated on 

the basis of  l = 0.568 nm and 𝑁&,(	= 45. Dashed dotted black line indicates the mass fractal 

power law 𝑅0~|
i
il,p

}
f/7

. Copyright 2020 ACS 

 Discussion Ring Structure 

The form factor of Eqs. 10 considers explicitly the ring structure as a self-similar object 

built from elementary Gaussian substructures and facilitates a nearly perfect and complete 

description of the SANS results; valid from the Gaussian substructures to the ring size for all 

molecular weights. The ring size independent cross over to 𝑃(𝑄)~𝑄#$ is strong evidence for 

its interpretation as the experimental footprint of the elementary loops of size 𝑁&,(. The different 

theories suggest that 𝑁&,( is to be expected close to 𝑁&, the length of an entanglement strand in 

the corresponding linear melt. For PEO 𝑁& has been determined by NSE on the scale of the 

reptation tube size resulting in 𝑁& = 59  [24]. There the entanglement distance is directly 

derived from the topological confinement acting on the moving chain. From the plateau 

modulus in rheological measurements 𝑁& = 37 is found  [32]. This relatively large difference 
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is typical in the comparison of microscopic and macroscopic experiments and so far, is 

unresolved. 𝑁&,(=45±2.5 is very close to the average between the two. 

The exponent, describing the average distances within the ring (Eq. 9) depends very 

slowly on the ring size from 𝜈=0.430 to 𝜈=0.460  from 𝑁 =1962 to 𝑁 =234 again demonstrating 

that a ring with 𝑁 𝑁&,( ≅ 44⁄  is still far away from mass fractal statistics. The cross over from 

𝜈 = f
$
	 for the elementary loops to the smaller exponent in the self-similar regime appears to be 

relatively sharp, but the sensitivity of the fit towards the variation of the cross over width is 

weak. The existence of such a rather sharp cross over leads to a backlash of 𝑟$(|𝑖 − 𝑗|)	in Eq. 

9 at the cross over point again supporting the picture of elementary loops. 

Having established experimentally the elementary loop size, we can check Obukhov’s 

result for 𝑅0(𝑁). Inserting 𝑁&,( into Eq. 1 𝑅&,($ = jnil,p
f$

= 1.21	nm$, the prediction of the 

decorated loop model is compared with the experimentally observed variation of 𝑅0$ with 

monomer number 𝑁 - the agreement is nearly quantitative (fig.6). Note that the prediction of 

Eq. 1 is calculated solely on the basis of the experimentally determined values for l and 𝑁&,(. 

We note, however, that the trend of 𝑅0	vs. 𝑁 𝑁&,(⁄  appears to be slightly steeper than the 

Obukhov’s prediction. 

Opposing the predictions of other theories, in the decorated loop model the cross over 

to mass fractal behavior takes place only for very large rings. In terms of Eq. 1 a ring size in 

the order of 𝑁 𝑁&,(⁄ > 10G would be needed to reach this limit. This result also seems to 

disagree with some simulations that indicate a cross over to mass fractal behavior 

around	𝑁 𝑁&,(⁄   about 10 - 15.  [33] 

Recently Halverson et al.  [21] summarized all available results from simulations and 

presented them as shown in Fig. 7. There a properly normalized radius of gyration is plotted vs. 

𝑁 3𝑁&⁄ . In this diagram on the small 𝑁 3𝑁&⁄  side, where 𝑅0$~𝑁 , the normalized radius of 

gyration squared increases with 𝑁f/E. The onset of the asymptotic mass fractal behavior is 

characterized by a decrease of the normalized radius of gyration squared with � i
7il
�
#$/fE

 . In 

order to compare with our structural data, we normalized as  
��,ª«¬n (i)

��n(il,)(7il il⁄ )p.­®� ¯
k¯l

�
°/±; 

𝑅0,²³´$ (𝑁) denotes the experimentally observed radii of gyration from table 1, 𝑁& = 𝑁&,( = 45, 

𝑅0$(𝑁&) = 1.21	nm$  and the exponent 0.78 relates to the experimentally observed power law 
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(Fig. 6). The magenta points present the results. As may be seen without any correction factors 

the simulation data follow very precisely the experimental results. As directly found by the 

measured 𝑁-dependence of 𝑅0  for the present 𝑁 3𝑁&⁄ values we are still not in the asymptotic 

mass fractal regime and again other than insinuated by Fig. 7 the cross over appears to be very 

broad.   

 

 

Fig. 7 Dependence of the ring 〈𝑅0$〉 on the reduced chain length  [21]. For the references to the 

other simulation and experimental data see the original paper. Note, that 𝑁& = 𝑁&,(. The 

magenta points indicate the values obtained in this work. Copyright 2012 APS 

 

Finally, a comparison with the results on PS-rings indicates that PS-rings are much 

closer to the structure of Gaussian rings even though a regime up to 	𝑁 𝑁&,(⁄ ≅ 15 was 

covered  [9]. The large qualitative difference to the PEO-rings is difficult to rationalize. Perhaps 

the much larger inherent stiffness of PS compared to PEO plays a role. However, for generic 
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properties, as proposed in the different theories, one would not expect such different qualitative 

behavior. 

 

Ring Dynamics 

After structural characterization that established the existence of Gaussian substructures 

or elementary loops building the rings, we investigated the large scale dynamics of these rings. 

We addressed the long range diffusion for each ring applying pulse filed gradient NMR (PFG-

NMR). Internal dynamics as well as the c.o.m. diffusion at the scale of the ring were 

investigated by NSE spectroscopy.  

We performed the PFG-NMR measurements using a Varian 600 MHz system for the 

larger rings (R40, R100) and Minispec 20 MHz from Bruker for the smaller rings (R10, R20) 

at 413 K. The attenuation of the echo signal from a pulse sequence containing a magnetic field 

gradient pulse is used to measure the translational diffusion of the molecules (protons) in the 

sample at the time scale of tens of milliseconds. During this time the protons are able to 

overcome the distances of order of hundreds of nanometers. The diffusion coefficient was 

measured using a standard stimulated echo pulsed-field-gradient (STE) sequence [34]. The 

diffusion attenuation decay measured using STE sequence is determined by the equation: 

𝐴v𝜏f,	𝜏$,	𝑔$w/𝐴v𝜏f,	𝜏$,	0w = exp |−
𝜏$
𝑇f
} exp |−

2𝜏f
𝑇$
} exp(−𝑞$(∆ − 𝛿 3⁄ )𝐷)								(11) 

where 𝑞 = 𝑔𝛾𝛿 is a generalized momentum transfer or scattering vector  [35]  with g and 𝛿 

fixed to 5 ms being the magnetic field gradient strength and duration respectively and 𝛾 is the 

proton gyromagnetic ratio, 𝜏f is the time interval between first and second radiofrequency 

pulses in STE sequence, 𝜏$ is the time interval between second and third radiofrequency pulses; 

𝑇f and 𝑇$ are the spin-lattice and spin-spin relaxation times respectively; Δ is the diffusion time 

set to 300 ms and 𝐷 is the diffusion coefficient  [35]. On definition  ∆≈ 𝜏f + 𝜏$ 	and  ∆≫ 𝛿. It 

is worth to note, that Eq. 11 describes the diffusion spin echo decay of a monophase system 

obeying free Fickian diffusion behaviour. For all samples 𝜏$ ≪ 𝑇f and  𝜏f ≪ 𝑇$. 

The diffusion attenuation decays are single exponential and exemplary presented in the 

Fig. 8.   
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Fig. 8 PFG-NMR diffusion attenuation decays for the larger rings R40 (blue) and R100 (black).  

The solid lines are fitting to the Eq. 11.  

The Fig 9 displays the NMR diffusion data at 413 K as a function of ring size in a double 

logarithmic plot revealing 𝐷;<=~𝑁#$.$ in good agreement with Halverson’s MD-simulations. 

Fig. 9 includes also diffusion data from linear PEO chains at 413 K. We find the slopes to be 

slightly different (-2.2 instead of -2.3) and the diffusivities differ by about a factor of 10 in 

reasonable agreement with simulations [25]. It has been found that the rings diffuse 

significantly faster than their linear counterparts. The authors try to explain this finding by the 

amoeba-like shape fluctuations, which do not require the complete reorganization of the internal 

winding of the ring chain. Very recently based on new microscopic dynamical theory Mei et 

al.  [36] obtained 𝐷;<=~𝑁#$	. 
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Fig. 9 PFG-NMR results for the diffusion constants for rings in the melt (red squares) as a 

function of chain length. Black squares show diffusion coefficients for corresponding linear 

PEO melts. Copyright 2020 APS 

  

For the NSE experiments samples containing 10% protonated rings in the corresponding 

deuterated matrix were prepared. With these samples the NSE experiments addressed the 

intermediate dynamic structure factor 𝑆(𝑄, 𝑡) related to the intra-ring dynamics. The 

measurements were performed at the instrument IN15 of the Institute Laue-Langevin in 

Grenoble, France. Using 3 different neutron wavelengths l = 1.0, 1.35 and 1.7 nm a dynamic 

range 0.1 ≤ 𝑡 ≤ 1000	ns was achieved. The data were corrected for the scattering contribution 

of the deuterated matrix and the Niobium container.  Fig 10 shows NSE-spectra from the two 

large rings, R40 and R100. The solid lines are the result of the theoretical description that will 

be discussed in the following.  
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Fig. 10 NSE-spectra addressing the intra-ring pair correlation function (single chain dynamic 

structure factor) (a) from the R40 melt and b) from the R100 melt; the 𝑄 values from above are: 

0.42, 0.49, 0.55, 0.69, 0.78, 0.86, 1.1, 1.2, 1.3 nm#f. The solid lines represent the best fit using 

the scaling model (see text). The insert shows the sum of errors 𝜒$ revealed by a combined fit 

of NSE data for R40 and R100 as function of the spectral exponent µ. The arrows indicate the 

expectations from the discussed theory model. Copyright 2020 APS 

The experiments aimed at scrutinizing the important elements of polymer ring 

dynamics. Requirements were: (i) The rings needed to be sufficiently large, in order to apply 

scaling approaches. (ii) The complex ring-dynamics demands to involve prior knowledge on 

the ring structure provided by SANS and the ring long range diffusion obtained by PFG-NMR.  
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The diffusion properties of polymer rings evidence three dynamic regimes, an early time 

sub-diffusive motion with 〈𝑟$(𝑡)〉;<=~𝑡@	(𝛼 < 0.75) which is followed by the established  

〈𝑟$(𝑡)〉;<=~𝑡7/G	  dynamics  [6,10] and finally by Fickian diffusion 〈𝑟$(𝑡)〉;<=~𝐷(𝑡. The first 

two regimes are accessible by NSE at least for the smaller rings, the long range Fickian 

diffusion 𝐷( by PFG-NMR.  The c.o.m diffusion, respectively the corresponding dynamic 

structure factor 𝑆(𝑞, 𝑡) = exp[−𝑞$ 6⁄ 〈𝑟;<=$ (𝑡)〉] reflects the time dependent  c.o.m. mean-

square-displacement 〈𝑟;<=$ (𝑡)〉. The initial two-stage sublinear diffusion regimes are connected 

to the long-time Fickian diffusion 𝐷( by the following expression:  

〈𝑟;<=$ (𝑡)〉 = ÁÂe
m
ÃÄ(#@~Å)lna

〈Æm
n〉

〈Æn
n〉
b~Å@Ç#j�a〈Æn

n〉
ÈÉp

bÊË
〈𝑟$$〉𝑡@Ì

Í

+ Â𝑒
Ä#lna〈Æn

n〉
ÈÉp

bËÅ
〈𝑟$$〉𝑡ÅÌ

Í

+ (6𝐷(𝑡)ÍÏ

f Í⁄

(12)	  

It describes the transition from an initial sub-linear diffusion with a MSD ∝ 𝑡@ until a 

MSD-value of ⟨𝑟ÒÓÔ$ (𝑡)⟩ = 〈𝑟f$〉 is reached;  then the c.o.m diffusion crosses over to MSD ∝ 𝑡Å 

until a MSD of  ⟨𝑟ÒÓÔ$ (𝑡)⟩ = 〈𝑟$$〉 is reached, where finally normal Fickian diffusion with a 

diffusion coefficient 𝐷( sets in. The sharpness of the transitions is controlled by 𝑎, the larger 

the value the sharper is the transition. Further Eq. 12 assumed that 0 < 𝛼 < 𝛽 < 1 and 〈𝑟f$〉 <

〈𝑟$$〉. The explicit form of Eq. 12 follows from the requirement that the input parameters for 

this phenomenological description are the long time diffusion 𝐷(, the two sub-linearity 

exponents 𝛼 and 𝛽 and the MSD values 〈𝑟f$〉 and 〈𝑟$$〉 that separate the regimes. The transition 

times at these MSD’s and the continuity of ⟨𝑟ÒÓÔ$ (𝑡)⟩ between the regimes is ensured by the 

form of Eq. 12.  
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Fig. 11 Center of mass MSD as evaluated directly from the dynamic structure factor (see text) 

for R10 (red) and R20 (blue). Red crossed squares, open and filled circles correspond to 𝑄 =

0.3, 0.5	and	0.8	nm#f	for R10; blue filled and open circles relate to 𝑄 = 0.3, 0.5	nm#f	for 

R20. The horizontal lines mark the different cross-overs 〈𝑟f$〉 and 〈𝑟$$〉. Dashed black line shows 

the MSD extrapolated from PFG-NMR diffusivity measured for R10 ring. Copyright 2020 APS 

Fig. 11 displays the 〈𝑟;<=$ (𝑡)〉 for R10 and R20 that are directly derived from the 

structure factor as 〈𝑟;<=$ (𝑡)〉 = −6 𝑄$⁄ ln[𝑆(𝑄, 𝑡)] taken at sufficiently low 𝑄, such that 

internal modes do not contribute (R10: 𝑄 = 0.3, 0.5, 0.8 nm#f; R20: 𝑄 = 0.3, 0.5 nm#f). The 

R10 〈𝑟;<=$ (𝑡)〉 clearly displays two cross-overs at 〈𝑟f$〉 ≅ 4.4	nm$	and	〈𝑟$$〉 ≅ 12.0	nm$		, 

while for R20 only the first cross over 〈𝑟f$〉 ≅ 7.4	nm$		is visible. The cross-overs are marked 

by horizontal lines in Fig. 11. From simulations we know that 〈𝑟$$〉 is expected to take place 

around 〈𝑟$$〉 ≅ 2…3	𝑅0$. For R10 we have 〈𝑟$$〉 𝑅0$� = 2.6 in very good agreement with 

simulations. The first cross over 〈𝑟f$〉 was already found earlier but remained unexplained [10]. 

We find 〈𝑟f$(20𝐾)〉/〈𝑟f$(10𝐾)〉=1.68 very close to the ratio of the two radii of gyration 

2.78$ 2.14$ = 1.69⁄   (see Table 1) leading us to conjecture that 〈𝑟f$〉 relates to the correlation 

hole effect as proposed for linear polymers by Guenza [37] that scales with 𝑅0 and leads to 
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c.o.m sub-diffusivity characterized by an exponent a. For linear chains a decreases with 

increasing molecular weight  [38]. With these results we then scale 〈𝑟f$〉 and 〈𝑟$$〉 toward higher 

𝑀� as  〈𝑟f$〉, 〈𝑟$$〉	~	𝑅0$~𝑁(.DH (see Fig. 6). The long range Fickian diffusion 𝐷( was taken from 

PFG-NMR and corrected for the NSE temperature.  

The internal ring motions are considered to evolve in two steps: At short time and 

distances the elementary loops perform Rouse dynamics with mode relaxation times 𝜏u~𝑝#$, 

where p is the mode number. For larger distances and times the regime of loop relaxation 

follows. In terms of scaling theories, there the mode spectrum has the form 𝜏u = 	 𝜏$𝑝#Ü, where 

𝜏$ is the first ring mode (only even modes are allowed) and 𝜇 the scaling exponent. Via a 

continuity condition at 𝜏& the two regimes are connected.   The dynamic structure factor for the 

internal ring dynamics assumes the form: 

𝑆��X(𝑄, 𝑡) =
1
𝑁� exp ¡

(𝑄𝑙)$

6 a
|𝑖 − 𝑗|{𝑁 − |𝑖 − 𝑗|}

𝑁 b
$o(|�#�|)

− 𝐵�,�(𝑡)¢
i

�,�

																 (13a)		

 with 

𝐵�,�(𝑡) = 2𝑁$o(|�#�|)(𝑙𝑄)$/(3𝜋$) �
1
𝑝$ cosa

𝑝𝜋[𝑖 − 𝑗]
𝑁 b á1 − expv−𝑡𝛤(𝑝)wã

u,&ä&�

											(13b) 

 

𝜈(|𝑖 − 𝑗|) delineates the conformational cross over from Gaussian statistics at distances 

|𝑖 − 𝑗| ≤ 𝑁&,( to compressed behavior |𝑖 − 𝑗|o at larger distances. It is described by Fermi-type 

cross over functions taken from the SANS-results: 𝜈(𝑛) = 𝑇�(𝑛)ν + v1 − 𝑇�(𝑛)wνf; νf = 1 2⁄    

with 𝑇�(𝑛) = {1 + exp[(𝑛 − 𝑛XæÍ�ç)/𝑛��rX�]}#f,  where 𝑛XæÍ�ç = 𝑁&,(. For the relaxation rate 

 

	𝛤(𝑝) =
á1 − 𝑇L(𝑝)ã𝜋$𝑊𝑙G𝑝$

𝑁$𝑙G + 𝑇L(𝑝)𝑊𝜋$ |
𝑝

𝑝=��
}
Ü
(𝑝=��/𝑁)$																						(14) 

holds. 𝑇L(𝑝) = {1 + exp[(𝑝 − 𝑝=��)/𝑝��rX�]}#f is the cross over function in 𝑝 with 𝑝=��  the 

number of elementary loops 𝑝=�� = 𝑁 𝑁&,(⁄  within the ring. From SANS 𝑁&,( = 45, revealing 

𝑝=��  = 5, 10, 22, 44 for our rings and µ the spectral exponent. The basic Rouse rate 𝑊𝑙G =

1.489	nmG ns⁄  is taken from NSE experiments on	𝑀�=190 kg/mol PEO melts also measured 

at the same temperature  [24]. Including all prior knowledge, we jointly fitted the spectra 

resulting from R40 and R100 varying only the spectral exponent µ and the exponents 

𝛼�G(	and	𝛼�f(( that describe the first sub-diffusive regime of the c.o.m diffusion [37]. All other 
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parameters remained fixed. Since the fits did not depend much on 𝑝��rX� , in order to establish 

a smooth cross over, we chose 𝑝��rX� = 0.1𝑝=��. As Fig. 11 demonstrates the model leads to 

an excellent fit of all the spectra. For the slopes 𝛼 in the first sub-diffusive regime we obtain: 

𝛼�f( = 0.65;	𝛼�$( = 0.53; 𝛼�G( = 0.54	and	𝛼�f(( = 0.41. Similar small exponents for the 

initial diffusion regime were also reported in recent MD-simulations for PE-rings  [27]. For the 

scaling exponent the joint fit reveals 𝜇 = 2.4 ± 0.1. We note that the fit results are very 

sensitive to the fractal exponents 𝜈, thus it is essential to fix them to the values, which were 

obtained with high precision by SANS (better than 1%). Applying the same fitting procedure 

also to the large 𝑄-regime of the R10 and R20 rings, we find µ(R10)=5.0 and µ(R20)=2.66; 

seemingly these smaller rings are not yet large enough to apply scaling considerations. Fig. 12 

displays the best fits to the ring samples with lower (nominal) 𝑀� = 10 and 20 kg/mol that are 

marginal or well below the scaling regime. Figs. 12 (a,b) show that also for these rings the 

model expression (Eq. 13) matches the NSE data nearly perfectly with just two free fitted 

parameters 𝛼 and 𝜇. 

 

 
 

 (a) 

 
(b) 

 

Fig. 12 Fits of Eq. 13 to the ring R10 (a); and to the ring R20 (b). The 𝑄-values from right to 

left were 0.5, 0.8, 1.0, 1.3, 2.0 nm-1 . Data taken from Gooßen et al. [10] 

 

 Discussion Ring Dynamics 

 Discussing the results, we first emphasize the overall goodness of fit: With only 3 fit 

parameters all spectra are excellently described. Let us now turn to the diffusion properties.  

The data analysis confirmed the 3 dynamic regimes of center off mass diffusion. In particular 
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the physical origin of the of the novel early time regime seems to be clarified. Showing several 

attributes of the short time diffusion of linear chains in the melt, we conjecture that it results as 

a consequence of the correlation hole potential as first suggested by Guenza for linear chains: 

(i) Its dynamic regime extends to a range comparable to 𝑅0$  and it scales with 𝑅0$. This can be 

directly read off from the R10 and R20 〈𝑟;<=$ (𝑡)〉 and is corroborated by the excellent fits for 

R40 and R100; (ii) the exponents 𝛼 decrease with increasing 𝑀�, as was observed for linear PE 

melts  [38]. On the basis of polymer integral equation theory recently Dell and Schweizer also 

emphasized  the importance of correlation hole effects  [39]. The 𝑀� dependence of 𝐷~𝑁#$.$  

agrees well with large scale MD-simulations but disagrees with all the scaling models that 

predict diffusion exponents between about -1.6 (FLG)  and -2 (DFLA, naive FLG). Seemingly 

the simple scaling argument 𝐷~𝑅0$ 𝜏r~𝑁(.DH/𝑁$.G~𝑁#f.I$⁄  does not hold. In considering 

important caging effect (see also Ref. [40]) the theory of Mei et al. finds that 𝜏r~𝑁H 7⁄  

and	𝐷~𝑁#$, so 𝐷~𝑅0$ 𝜏r⁄  is reasonable zero order approximation since the theory 

analysis  [11] employed 𝑅0~𝑁f 7⁄   as a simple model. Nevertheless, for a finite ring our data 

are not in accordance with such a prediction ( 𝐷~𝑁#$.$	;	𝜏r~𝑁$.G	and	𝑅0~𝑁(.78 that results in  

��n

��
~ ip.­®

in.n
= 𝑁#f.IG ≠ 𝑁#$.$). 

 Using a microscopic theory for time-dependent sub-diffusive c.o.m. motion Mei et 

al.  [36] demonstrated that the sub-linearity exponent over broad length and time interval is a 

distance and time-dependent. This is in qualitative agreement with our results (0 < 𝛼 < 𝛽 <

1).  However, if try to make a quantitative comparison, we realize that the experimental 

exponents are systematically smaller than those predicted by theory. For the R20  ring, where 

we directly measured the time dependent c.o.m MSD,  we are in the regime of normalized 

𝑅ê(t)=[〈𝑟;<=$ (𝑡)〉/𝑅0$  between 0.31 and 1.3. The R20 ring is built from 𝑁=445 monomers. If 

we compare with the prediction of Fig. 8  in Ref.  [36] we should find values of 𝛾 between 0.8 

and 0.95. We actually observe a short time slope 𝛼 = 0.6		that	around	𝑡 =

300	ns	crosses	over	to	𝛼 = 0.75. Thus, a quantitative comparison with the theory by Mei et 

al. fails. This also holds, if we compare with the calculations for the next smaller 𝑁=200 or 

larger 𝑁=800 cases. For our R100 ring, where we inferred the c.o.m. MSD from the fit, the 

exponent came out as 𝛼 = 0.41 in contrast to the theory predictions that lie in between  0.55 

and nearly 1.  

 

 



 28 

 The concept of internal motion that takes place within two different dynamic regimes is 

well supported by our data. As the ring conformations already show, at short distances along 

the chain |𝑖 − 𝑗| ≤ 𝑁&,( = 45 the conformation is Gaussian and like in linear polymers  Rouse 

dynamics is a valid model. Beyond this limit the conformation is compressed and loop 

dynamics is proposed theoretically - the different scaling models distinguish themselves by 

different spectral exponents. The quality of the data description (i) shows that scaling models 

are well supported and (ii) the scaling exponent µ comes out close to the FLG prediction. In 

order to get an impression how significant the extracted value for the spectral index 𝜇 is, in the 

insert of Fig. 10a we plot  the sum of residual errors 𝜒$ obtained by comparison of values of 

𝑆(𝑞, 𝑡) from the model and the NSE data from R40 and R100 simultaneously for all available 

𝑄-values. For each preset value of 𝜇 the two slightly different 𝛼 values for R40 and R100 were 

allowed to vary to find the minimum of 𝜒$ fit. 

Note that the ideal value of 𝜒$ = 1 for a best fit is not reached due the fact that the pure 

statistical errors of the NSE data are quite small such that they are of the same order of 

magnitude or below residual systematic fluctuation of the data points due to external magnetic 

noise or other stability issues and residual imperfections of the model functions. However, the 

matching shown in the figures reveals that the fitting quality is still extraordinarily good over 

the whole accessed time and wavevector range for a model with only two fitting parameters 𝜇, 

𝛼. As discussed above, the exponent 𝛼 characterizing shorter time scale sub-diffusive behavior 

depends on the molecular weight (see Table 1). Mei et al.  [36] also addressed this point 

showing that the minimum of the temporal γ exponent becomes deeper with increasing N and 

called it an open problem. This fact is not captured by the scaling models. However, as we state 

above, correlation hole effects could be a means to describe this phenomenon. 

To put the value of 𝜇 in the context of ring size effects and further estimate its error the 

following considerations can be made. If we take the analogy to phase transitions, then finite 

size effects may arise from the distance of the actual ring size from the ideally large ring that 

displays mass fractal behavior. In table 1 we have quoted the effective scaling exponents that 

arise for rings with fractal dimensions as observed by SANS. E.g. for the R100 ring we found 

𝑑L =
f
o
= 2.33 rather far apart from the asymptotic large N value of 𝑑L = 3. Consequently, the 

exponent for 𝜏u = 𝜏&á𝑁/𝑁&,(ã
a$~ m

��
bóÜ

 changes from 𝜇 =	2.33 for 𝑑L = 3 to 𝜇 = 2	 + f
$.77

=

2.43	 because of the finite ring size. Similarly, the other exponents are affected. From another 

side we might look at the values we obtain for smaller rings: As quoted above for R10 𝜇 =

5.0	and for R20 𝜇 = 2.66 arise, while a joint fit of R40 and R100 reveals 𝜇 = 2.4. Thus, the 
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exponents show the tendency to decrease with increasing ring size. 

As Fig. 12 shows, the theoretical curves fit extraordinary well the experimental data. 

Consequently, the fit results in very small statistical errors on the order 1%. Systematic errors 

are very difficult to estimate, but from comparing results that were obtained by varying the 

many input parameters within their statistical accuracies, we came to the conclusion that the 

uncertainty of 𝜇 is on the order of 0.1. Nevertheless, our experiments agree best with 

Rubinstein’s self-consistent FLG model  [11] for the internal ring dynamics even though the 

predictions for diffusion are not fulfilled.  

The segmental MSD may be directly studied by incoherent neutron scattering, which 

measures the self-correlation function of the protons. In this case the structure factor arising 

from the self-correlation-function has the form: 

  𝑆ç&jL(𝑄, 𝑡) = A(𝑄)	exp õ−ön

I
〈𝑟$(𝑡)〉÷																																						(15) 

where 〈𝑟$(𝑡)〉 is the average MSD of a monomer containing both motion by intra chain 

relaxation as well by translational c.o.m. diffusion, A(𝑄) is the Debye-Waller factor. There are 

some disadvantages as well as virtues of using a conventional NSE spectrometer for the 

spectroscopy of spin-incoherent scattering. First of all, NSE is the only neutron spectroscopic 

method with high enough time/energy resolution in the relevant 𝑄 range. However, there is an 

inherent penalty due to the fact that the spin of the scattered neutron is flipped with a probability 

of 2/3.  Therefore, the remaining net polarization is -1/3 of the original yielding a sign reversed 

reduced echo signal on an additional background amounting to 2/3 of the total scattering. A 

virtue of the spin-flip scattering is that multiple scattering is efficiently suppressed since two 

subsequent scattering events only leave 1/9 of the signal and higher level multiple scattering 

events contribute even less to the spin echo amplitude. The overall intensity is much smaller 

(10 . . . 20 times) than the coherent small angle scattering from chain labeled samples. Because 

of the low scattering intensity very careful background measurements from the sample 

container and spectrometer components are necessary. 

Employing the NSE instrument IN15 at the ILL, using neutrons with 𝜆 = 0.6	nm we 

studied 𝑆ç&jL(𝑄, 𝑡) for the ring hR100 and the corresponding linear chain hL100 (see table 1). 

The samples had a transmission of 60%. Fig. 13 displays the measured spectra after background 

subtraction for both materials at 𝑄 = 1.2	nm-1 and 𝑄 = 1.7	nm-1. We note that at early times 

the spectra from the ring and the linear polymer are nearly identical, while at longer times the 

ring polymer relaxes somewhat faster than the linear chain. A reliable MSD may only be 

evaluated from spectra that have not decayed too much (𝑆(𝑄, 𝑡)/𝑆(𝑄, 0) ≥ 0.05). Thus, in 

order to cover long times the corresponding 𝑄-value needs to be as small as possible. As it 
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turned out for 𝑄 < 1.2	nm-1 the coherent background from the sample container and instrument 

components was too large to allow a meaningful data evaluation. This restricted the time range 

to 𝑡=Íú = 40	ns. 

 

 
Fig. 13 Incoherent spectra from the linear polymer hL100 and the ring R100 at 𝑄-values of  

𝑄 = 1.2	nm-1	(circles) and 𝑄 = 1.7	nm-1 (squares). 

 

From these spectra at 𝑄 = 1.2	nm-1	and 1.7	nm-1 the segmental MSD were directly 

determined using 〈𝑟$(𝑡)〉 = −6 𝑄$� ln	(𝑆ç&jL(𝑄, 𝑡)/𝑆ç&jL(𝑄, 0)). For both the linear as well as 

the ring polymer the results are displayed in Fig. 14 in a double logarithmic plot.  
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Fig. 14  Segmental MSD derived from the incoherent spectra of hL100 (red squares) and hR100 

(black dots) in a double logarithmic presentation. The lines display the limiting power laws for 

Rouse motion (𝑡f $⁄ ) and local reptation (𝑡f G⁄ ) and an empirical power law for rings  [10,25].  

 

As predicted by the Rouse model initially at shorter times the MSD of both polymers 

nicely follow a 𝑡f $⁄ 	power law. As a consequence of the comparatively very small translational 

diffusion of the linear chain its MSD comes out slightly below that of the ring, where the 

translational diffusion matters (see Fig. 14). Then for the linear chain at a cross over time 

𝜏&
ç&jL ≅ 8	ns the time - power law weakens and changes to time dependence compatible with 

𝑡f G⁄ 	power law, which is expected for local reptation. Compared to the expected 𝜏& =
r°

ün	ýj°
=

33	ns the cross over time observed in the self-correlation function is shorter by about a factor 

of 4  [40]. This relates to the different type of physical effect that underlies the segmental MSD 

being affected by tube constraints: Whenever on average a segment pervades half of the tube 

size the tube constraints affects its motion. On the other hand, the coherent signal stems from 

chain fluctuations probing the lateral constraints. While for the linear chain the cross over to 

local reptation is evident, for the ring the relative slowing down of the MSD appears to be 

somewhat less pronounced and takes place at somewhat later time (13.5 ns). 

Finally, Fig. 15 displays the results from the hydrogenated hR100 in the context of the 

overall picture of ring dynamics, as it was derived on the basis of the coherent scattering 
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explained above. Using the model parameters obtained from the spectral fit (Fig. 10) we 

calculated the predictions for the MSD due to translational and internal motion reaching out to 

the regime of Fickian diffusion at times beyond in the order of 106 ns. The red dashed dotted 

line presents the segmental MSD, while the green sold line marks the c.o.m. MSD. Both add to 

the solid blue line describing the total MSD of a segment that is observed by the incoherent 

experiment. It is very satisfying to find the excellent agreement between the data for the self-

correlation function obtained in an independent experiment with the prediction on the basis of 

the coherent scattering data underlining the consistency of the data evaluation.  

 

 

 
Fig. 15 Comparison of the segmental MSD for R100 ring, directly obtained from the self-

correlation function (incoherent scattering) (symbols). Solid blue line presents MSD calculated 

from the best fit of the pair correlation function (Eqs. 13). Dash horizontal lines show the 〈𝑟f$〉 

and 〈𝑟$$〉. The solid green line represents the c.o.m MSD as fitted with our model (for the 

exponent see Table 1)  and red dash-dotted line is the segmental MSD. The black solid lines 

demonstrate power laws, the vertical lines 𝜏&, 𝜏æ��0 indicate the loop Rouse time and longest 

relaxation time of the ring, respectively. The figure extends the time range showing the 

predicted full dynamic regime based on the obtained fit parameters. Copyright 2020 APS 
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Conclusion 

We have presented a comprehensive study on the structure and dynamics of very large 

well defined ring polymers and were able to scrutinize existing theories and large scale 

simulations. The evaluation of ring conformations in the melt established  

• the existence of Gaussian substructures with a size that is independent of the ring 

molecular weight. We have associated these substructures with the predicted elementary 

loops of a dimension close to the entanglement length of their linear counterpart. 

• the overall ring dimensions follow a power law as a function of the monomer number. 

The magnitude of 𝑅0$	quantitively agrees with a compilation of simulation results [21]. 

However, other than suggested on the basis of these simulations, the experimentally 

determined power law exponent for 𝑅0 of 𝜈�� = 0.39 shows that the mass fractal 

regime is not yet reached (𝜈 = 0.33).  

• Yet, the dependence of 𝑅0 on 𝑁 agrees very well with the predictions of Obukhov’s 

decorated loop model  [17]. 

 

The long range ring diffusion was investigated by PFG-NMR. Internal relaxation and 

short time c.o.m. diffusion was studied by neutron spin echo spectroscopy. The following 

results stand out: 

• Long range Fickian diffusion of rings in their melt follows a power law 𝐷~1 𝑁⁄ $.$ in 

good agreement with simulations but contradicting scaling theories that all predict 

exponents ≤ 2 and also recent theoretical predictions of an exponent of 2. The 

magnitude of the diffusion coefficients is a bout 10 times smaller than that of the 

corresponding linear melt again in rather good agreement with simulations. 

• Center of mass diffusion on the scale of the molecule is characterized by two subsequent 

power laws in 𝑡; starting with 〈𝑟;<=$ (𝑡)〉~𝑡@ until the MSD reaches a magnitude ≅ 𝑅0$ 

then crossing over to 〈𝑟;<=$ (𝑡)〉~𝑡Å	with	𝛼 < 𝛽 = 3/4. While the second power law has 

been predicted theoretically, the first power law displays striking similarities to 

conclusions based on the correlation hole effect  [36]. 

• For the internal relaxation of rings a number of different scaling theories exist that for 

loops larger than the elementary loop predict different spectral exponents for the 

dependence of the relaxation time on the mode number 𝑝: 𝜏u~𝑝#Ü . The NSE result of 

𝜇 = 2.4 ± 0.1 favors the Fractal Loopy Globule model by Rubinstein et al.  [11] 
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• Finally, we have directly measured the segmental MSD, that perfectly agrees with what 

is calculated by the model describing the single chain dynamic structure factor 

underlining the internal consistency of our approach. 

 

With this work we present a combined study both on the ring conformation as well as 

on their dynamics taken on the same very large rings, where finite size effects should be weak. 

The results may serve as a benchmark for the development of a better theoretical understanding 

of these topologically unique polymers.  

 

Appendix I 

The errors in 𝑅0 were obtained by evaluating the sum of errors taken at one 𝜎 statistical 

deviation of the two relevant fit parameters monomer length 𝑙 and fractal exponent 𝜈 = 1/𝑑L 

determining 𝑅0. Table AI represents the detailed results.  

 

Table A1 Radii of gyration 𝑅0	calculated at the one sigma statistical deviation of the fractal 

exponent 𝜈 = 1/𝑑L and the monomer length l 

Ring 𝑅0[𝑛𝑚] l 

[𝑛𝑚] 

𝑅0(𝑙 + ∆𝑙) 

[𝑛𝑚] 

𝑅0(𝑙 − ∆𝑙) 

[𝑛𝑚] 

𝜈 𝑅0(𝜈 + ∆𝜈) 

[𝑛𝑚] 

𝑅0(𝜈 − ∆𝜈) 

[𝑛𝑚] 

R100 4.94 0.583±0.012 5.04 4.84 0.433±0.003 50.25 48.5 

R40 3.56 0.561±0.012 3.63 3.48 0.448±0.003 36.0 35.0 

R20 2.88 0.573±0.012 2.93 2.81 0.451±0.010 3.00 2.76 

R10 2.17 0.555±0.012 2.21 2.11 0.460±0.003 2.18 2.14 

 

The final errors were calculated from the sum of errors:        

∆𝑅0 = !1
2
õv𝑅0(𝑙) − 𝑅0(𝑙 ± ∆𝑙)"""""""""""""w

$
+ v𝑅0(𝜈) − 𝑅0(𝜈 ± ∆𝜈)"""""""""""""""w

$
÷														(A1) 
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Furthermore,  linear contaminants may influence the apparent	𝑅0. Scattering observes 

the z-average of the radii of gyration. The narrow molecular weight distribution does not result 

in any important correction. However, the admixture of linear contaminants needs to be 

scrutinized. The z-average is calculated as 

〈𝑅0$〉# =
∑𝑤�𝑀�〈𝑅0$〉�
∑𝑤� 𝑀�

																																																	(A2)			

where 𝑤� are the mass fractions and 𝑀�	the component masses.  Since the masses of the ring 

and the leading linear contaminant are equal Eq. A2 reduces to 

〈𝑅0$〉# =
∑𝑤�〈𝑅0$〉�
∑𝑤�

																																																				(A3) 

With the size of the linear component 〈𝑅0$〉j�� =
f
I
𝑙$𝑁 we may equate Eq. 12 to: 

〈𝑅0$〉æ��0 =
〈𝑅0$〉<Zç&æä&r −𝑤j��〈𝑅0$〉j��

𝑤æ��0
																												(A4) 

With the linear weight fractions obtained from characterization, table A1 presents the 

corrections. 

 

Table A2 Corrections for the radii of gyration as a consequence of linear contaminants 

Ring 𝑤j��  Correction ∆𝑅0
æ��0[nm] 

R100 below 1%  less than -0.08 

R40 below 1% less than -0.04 

R20 3.5% - 0.1 

R10 1.5% - 0.03 

 

For the two largest rings the correction will be smaller than the quoted values. The exact 

amount cannot be given since the linear contamination came out to be smaller than 1%. We 

estimate that half of the quoted value is the true value. In Table A1 we have corrected for half 

of ∆𝑅0
æ��0 and added the other half to the uncertainty. 
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